A world where we are relying increasingly on computing, to share our information and store our most precious data, the idea of living without computers might baffle most people.
But if we continue to follow the trend that has been in place since computers were introduced, by 2040 we will not have the capability to power all of the machines around the globe, according to a recent report by the Semiconductor Industry Association.
But if we continue to follow the trend that has been in place since computers were introduced, by 2040 we will not have the capability to power all of the machines around the globe, according to a recent report by the Semiconductor Industry Association.
To prevent this, the industry is focused on finding ways to make computing more energy efficient, but classical computers are limited by the minimum amount of energy it takes them to perform one operation.
READ NEXT
Quantum computing is poised to transform our lives. Meet the man leading Google’s charge
Quantum computing is poised to transform our lives. Meet the man leading Google’s charge
Quantum computing is poised to transform our lives. Meet the man leading Google’s charge
Quantum computing is poised to transform our lives. Meet the man leading Google’s charge
By KATHRYN NAVE
This energy limit is named after IBM Research Lab’s Rolf Landauer, who in 1961 found that in any computer, each single bit operation must use an absolute minimum amount of energy. Landauer’s formula calculated the lowest limit of energy required for a computer operation, and in March this year researchers demonstrated it could be possible to make a chip that operates with this lowest energy.
This energy limit is named after IBM Research Lab’s Rolf Landauer, who in 1961 found that in any computer, each single bit operation must use an absolute minimum amount of energy. Landauer’s formula calculated the lowest limit of energy required for a computer operation, and in March this year researchers demonstrated it could be possible to make a chip that operates with this lowest energy.
It was called a “breakthrough for energy-efficient computing” and could cut the amount of energy used in computers by a factor of one million. However, it will take a long time before we see the technology used in our laptops; and even when it is, the energy will still be above the Landauer limit.
This is why, in the long term, people are turning to radically different ways of computing, such as quantum computing, to find ways to cut energy use.By LEE BELL
What is quantum computing?
Quantum computing takes advantage of the strange ability of subatomic particles to exist in more than one state at any time. Due to the way the tiniest of particles behave, operations can be done much more quickly and use less energy than classical computers.In classical computing, a bit is a single piece of information that can exist in two states – 1 or 0. Quantum computing uses quantum bits, or ‘qubits’ instead. These are quantum systems with two states. However, unlike a usual bit, they can store much more information than just 1 or 0, because they can exist in any superposition of these values.
What is quantum computing?
Quantum computing takes advantage of the strange ability of subatomic particles to exist in more than one state at any time. Due to the way the tiniest of particles behave, operations can be done much more quickly and use less energy than classical computers.
“Traditionally qubits are treated as separated physical objects with two possible distinguishable states, 0 and 1,” Alexey Fedorov, physicist at the Moscow Institute of Physics and Technology told WIRED.By EMILY REYNOLDS
“The difference between classical bits and qubits is that we can also prepare qubits in a quantum superposition of 0 and 1 and create nontrivial correlated states of a number of qubits, so-called ‘entangled states’.”
“The difference between classical bits and qubits is that we can also prepare qubits in a quantum superposition of 0 and 1 and create nontrivial correlated states of a number of qubits, so-called ‘entangled states’.”
A qubit can be thought of like an imaginary sphere. Whereas a classical bit can be in two states – at either of the two poles of the sphere – a qubit can be any point on the sphere. This means a computer using these bits can store a huge amount more information using less energy than a classical computer.Last year, a team of Google and Nasa scientists found a D-wave quantum computer was 100 million times faster than a conventional computer. But moving quantum computing to an industrial scale is difficult.By EMILY REYNOLDS
Computations occur when qubits interact with each other, therefore for a computer to function it needs to have many qubits. The main reason why quantum computers are so hard to manufacture is that scientists still have not found a simple way to control complex systems of qubits.Now, scientists from Moscow Institute of Physics and Technology and Russian Quantum Centre are looking into an alternative way of quantum computing. Not content with single qubits, the researchers decided to tackle the problem of quantum computing another way.“In our approach we observed that physical nature allows us to employ quantum objects with several distinguishable states for quantum computation,” Fedorov, one of the authors of the study, told WIRED.
Computations occur when qubits interact with each other, therefore for a computer to function it needs to have many qubits. The main reason why quantum computers are so hard to manufacture is that scientists still have not found a simple way to control complex systems of qubits.
